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Content description: The problem of separating buildings from trees has been investigated 

using a combination of color, texture and dimensional cues for an improved building detection 

performance in complex scenes. 

 

 

Abstract: Effective separation of buildings from trees is a major challenge in automatic 

building detection from aerial imagery and LIDAR data. This paper presents a three-step 

method for effective separation of buildings from trees. Firstly, it uses cues such as height to 

remove objects of low height such as bushes, and width to exclude trees with small horizontal 

coverage. The height threshold is also used to generate a ground mask where buildings are 

found to be more separable than in so-called normalized DSM. Secondly, image entropy and 

color information are jointly applied to remove easily distinguishable trees. Finally, an 

innovative rule-based procedure is employed using the edge orientation histogram from the 

imagery to eliminate false positive candidates. The improved building detection algorithm has 

been tested on different test areas and it is shown that the algorithm offers high building 

detection rate in complex scenes which are hilly and densely vegetated. 
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1. Introduction  

Building detection from remotely sensed data has a number of practical applications 

including urban planning, homeland security and disaster (flood or bushfire) management. 

Consequently, a number of automated building detection techniques have been reported over the 

last few decades. These can be divided into three major groups (Lee et al., 2008). Firstly, there 

are many algorithms which use 2D or 3D information from photogrammetric imagery. 

Secondly, there have been several attempts to detect building regions from LIDAR (LIght 

Detection And Ranging) data. Finally, since LIDAR and imagery each have particular 

advantages and disadvantages in horizontal and vertical positioning resolution and accuracy, 

several authors have promoted an integration of LIDAR data and imagery as a means of 

advancing building detection. More specifically, intensity and height information from LIDAR 

can be used with texture and region boundary information from imagery to improve detection 

accuracy (Habib et al., 2010). 

 However, the success of automatic building detection is still largely impeded by scene 

complexity, incomplete cue extraction and sensor dependency of data (Sohn and Dowman, 

2007). Vegetation, and especially trees, can be the prime cause of scene complexity and 

incomplete cue extraction. The situation becomes complex in hilly and densely vegetated areas 

where only a few buildings are present, these being surrounded by trees (see Figure 1). 

Important building cues can be completely or partially missed due to occlusions and shadowing 

from trees. Trees also change color in different seasons and may be deciduous. Moreover, image 

quality may vary for the same scene even if images are captured by the same sensor, but at 

different dates and times. So, when the same detection algorithm is applied to two different 

images of the same scene, the outcomes may well be different. Therefore, many existing 

building detection techniques that depend largely on color information for separation of 

buildings from trees exhibit poor detection performance. 



 

Application of a recently developed building detection algorithm (Awrangjeb et al., 2010b) 

has shown it to be capable of detecting buildings in cases where cues are only partially 

extracted. For example, if a section of the side of a roof (at least 3m long) is correctly detected 

the algorithm can also detect all or part of the entire building. However, this detector does not 

necessarily work well in complex scenes and hilly areas. Buildings may be surrounded by dense 

vegetation, they may have the same color as trees or trees may have colors other than green. In 

hilly areas, where there is a large variation in height within a small area, a common height 

threshold does not work at all. For instance, Figure 1 shows two hilly areas with complex scene 

structures. Each of the scenes contains around 25 to 35 buildings, with most being closely 

surrounded by dense vegetation. Many of the buildings are seriously occluded and some are 

shadowed. A small number of buildings in both areas are green. While in Figure 1b trees are 

purely green, in Figure 1a there are many trees which are not purely green. 

This paper presents an improved building detection algorithm that achieves effective 

separation of buildings from trees. It uses a combination of color, texture and dimensional cues 

to eliminate trees. Firstly, objects below a given threshold above the ground, such as bushes, 

cars and carports, are removed from the raw LIDAR data. This cue is also used to generate a 

ground mask where trees are found to be more separable than in the well known normalized 

DSM (nDSM). Secondly, image entropy and color information are employed together to 

remove trees that are easily distinguishable. Finally, an innovative rule-based procedure based 

on the edge orientation histogram from the image is used to eliminate false positive detection of 

trees. The improved detector has been tested on a number of scenes covering different test areas. 

The data were collected with different sensors, at different dates and times of the day. 

The main contributions of this paper are as follows. 

 We have reviewed the cues that have been used for classification of buildings and 

trees. A building detection algorithm can apply a combination of two or more of these 

cues (Section 2). 



 

 We have proposed an effective method of separating buildings from trees (Section 

3). The standard values of different parameters of the proposed method have been 

empirically set (Section 4.4). 

 Through experiments (Section 4.5) we have shown that while the application of 

color information alone may misclassify some of the green buildings and non-green 

trees, the joint application of color and entropy information moderately improves the 

classification. The application of the newly proposed rule-based procedure eliminates a 

large number of false building detections resulting in a significant performance rise in 

complex scenes. 

 When compared with an existing detector (Rottensteiner et al., 2005) that was 

tested on a same test data set, the proposed improved detector was found to offer 

significantly better performance (Section 4.5). 

 

2. Cues for Tree Removal 

Existing building detection algorithms make use of different cues with a view to separating 

buildings from trees. While cues related to color are useful only with multispectral images, cues 

related to width, height, area and texture can be used with both LIDAR and images. 

• Height: A height threshold (2.5m above ground level) is often used to remove low 

vegetation and other objects of limited height, such as cars and street furniture (Rottensteiner et 

al., 2007; Cheng et al., 2011). Trees taller than the building roof cannot be removed via this 

height thresholding. Dash et al. (2004) used the height variation along the periphery of objects 

present in the data to distinguish trees from buildings. Rottensteiner et al. (2007) and 

Khoshelham et al. (2008) used height difference values between first and last pulse LIDAR data 

for the same purpose, since it can be anticipated that the differences will be large for trees but 

negligible for buildings. However, there are two limitations in using this cue. Firstly, the height 

difference between the pulses must be at least 2m (Maas, 2001). Secondly, a first pulse is not 



 

always reflected from the upper branches of a tree and a last pulse may sometimes be a 

reflection from a tree trunk or branches. 

• Width, area and shape: If the width or area of a detected object is smaller than a 

threshold, then it is removed as a tree. Awrangjeb et al. (2010b) used a reasonable threshold of 

3m for width; however, Lee et al. (2003) have employed a high area threshold 50m2 which can 

also remove small buildings. Chen et al. (2006) employed an area threshold of 30m2 and missed 

small buildings. A number of shape attributes can be found in Matikainen et al. (2007). 

• Surface: Many authors (Khoshelham et al., 2005; Zhang et al., 2006; Cheng et al., 2011) 

applied plane-fitting techniques on the non-ground LIDAR points to separate buildings and 

trees. A plane that fits a roof plane well is expected. These techniques largely depend on LIDAR 

density, since for a small but complex building roof the algorithm may not converge to the 

correct solution if the density of LIDAR points is low. Rottensteiner et al. (2007) applied a 

polymorphic feature extraction algorithm to the first derivatives of the DSM in order to measure 

the strength and directedness of surface roughness for pixels displaying a high roughness value. 

Their classification failed to detect buildings smaller than 30m2 in size, since the number of 

(homogenous) LIDAR points was low for small buildings. Moreover, due to restrictions of 

surface geometry, the number of object types that can be discriminated within a DSM is limited 

(Haala and Brenner, 1999). Chen et al. (2006) employed slope variance using LIDAR data to 

measure surface roughness. A high estimation of the roughness index indicates a vegetation 

area. Sampath and Shan (2010) applied Eigen analysis at each LIDAR point by fitting a plane 

within its Voronoi neighborhood and separated planar points (roofs) from non-planar points 

(trees etc). 

• Colors: A high NDVI (normalized difference vegetation index estimated using 

multispectral images) value for a pixel indicates vegetation, whereas a low NDVI value 

generally indicates a non-vegetation pixel. This cue, which is frequently employed (Sohn and 

Dowman, 2007; Demir et al., 2009), has been found to be unreliable even in scenes where trees 



 

and buildings have distinct colors (Rottensteiner et al., 2007). The situation becomes more 

difficult when trees change color or lose leaves in different seasons. Vu et al. (2009) applied K-

means clustering on multispectral images to obtain spectral indices for clusters such as trees, 

water and buildings. Shorter and Kasparis (2009) used color invariants. If the majority of pixels 

in a segmented region represent candidate pixels for vegetation, then the segment is marked as 

vegetation. This technique did not work when non-vegetation pixels shared similar spectral 

attributes with vegetation, and the experimentation showed that it was unable to classify 

buildings smaller than 70m2 (Shorter and Kasparis, 2009). Lee et al. (2003) used training pixels 

of different colors from roofs, roads, water, grass, trees and soil for classification. A large 

number of false positives, as high as 300% and caused by trees and occlusions in the vicinity of 

buildings, was reported as the most critical problem (Shan and Lee, 2005). This classification 

technique failed if an object in the test scene had a color other than its designated colors in the 

training set. More recently, Lee et al. (2008) used green pixel values directly to identify trees. A 

number of other cues generated from color image and height data can be found in Matikainen et 

al. (2007) and Salah et al. (2009). 

• Texture: For the case of objects having similar spectral responses, Chen et al. (2006) used 

the grey level co-occurrence matrix (GLCM) of the image to quantify co-occurrence 

probability. However, this method does not indicate how to cope with erroneous lines (Sohn and 

Dowman, 2007) and it cannot detect small buildings. Some GLCM indices, eg mean, standard 

deviation, entropy and homogeneity, are applied to both height and image data in order to 

classify buildings and trees (Matikainen et al., 2007; Salah et al., 2009). Both Matikainen et al.  

(2007) and Salah et al. (2009) used complex and time consuming classification techniques on 

large numbers of attributes. The latter showed good detection performance, though it failed to 

detect small buildings. 

• Others: Segmentation of LIDAR intensity data can also be used to distinguish between 

buildings and trees (Maas, 2001). Sampath and Shan (2007) used 1D bi-directional 



 

filter to classify ground and non-ground LIDAR points. Demir et al. (2009) made use of the 

density of the raw DSM and DTM. The DSM point cloud included all LIDAR points with 4 

echoes per pulse and a much higher point density was observed for trees than for open terrain 

and buildings. In contrast, the DTM included only points on the ground, so it displayed holes at 

building positions, and the point density at trees was found to be lower than that in open terrain. 

 

3. Improved Building Detection 

The proposed detector, which is an improved version of that described in Awrangjeb et al. 

(2010b), employs a combination of height, width, color and texture information with the aim of 

more comprehensively separating buildings from trees. Although cues other than texture were 

used in the earlier version of the detector, the improved formulation makes use of additional 

texture cues such as entropy and the edge orientation histogram at three stages of the process, as 

shown in Figure 2. Awrangjeb et al. (2010b) presented different steps of the detection algorithm 

in detail. In this paper, we focus on how texture, dimensional and color information can be 

applied jointly in order to better distinguish between buildings from trees. 

 

3.1. Application of Height Threshold 

A height threshold Th = Hg + 2.5m, where Hg represents the ground height (DEM value), is 

applied to the raw LIDAR data. This threshold removes objects of low height (shubbery, road 

furniture, cars, etc.) and preserves non-ground points (trees and buildings). 

The corresponding DEM height for a given LIDAR point (x, y, z) is assigned as a value of 

Hg. If there is no corresponding real DEM height recorded for (x, y, z), the average DEM height 

in its neighborhood is used. We first check within a 3×3 neighborhood around (x, y) and if there 

is at least one real DEM height the average of all real DEM heights within the neighborhood is 

considered as Hg for (x, y, z). Otherwise, the neighborhood is enlarged to 5×5. 



 

The height threshold Th is also used to generate a ground mask Mg, which has the same 

resolution as the image. All pixels in Mg are initially assigned 0 (false). If the height z of a 

LIDAR point (x, y, z) is less than Th, the corresponding pixel in Mg is assigned 1. In addition, 

since the horizontal point distance of the LIDAR data dl is generally higher than that of the 

orthoimage di, all the pixels in a n×n neighborhood of (x, y) are also assigned 1, where n = 2 + 

dl/di. Consequently, the black areas in Mg indicate ‘void areas’ where there are no laser returns 

below Th (ground areas covered by buildings and trees). 

The generated mask is technically different from the well known nDSM where non-zero 

heights indicate the elevated objects above Th. Therefore, as shown in Figure 3, buildings and 

trees are found to appear thinner in Mg than in the nDSM. In Figure 3, the nDSM is shown as a 

binary image where black pixels indicate non-zero heights (greater than Th). The first row in the 

figure shows an example of a simple scene with a flat ground, while the second row shows the 

same for a complex scene with a hilly ground where buildings are mostly surrounded by dense 

vegetation. In both of the scenes, buildings and trees appear thinner in Mg than in the nDSM. 

For the first scene in Figure 3, most of the trees around the building at the lower left of the scene 

(shown within a circle) will be clearly separable in Mg, while in the nDSM they are almost 

connected to the building. For the second scene in Figure 3, each of the buildings is strongly 

connected to the neighboring vegetation in the nDSM, while they are clearly separable in Mg. 

Consequently, unlike the existing building detectors that use the nDSM for building detection, 

the use of Mg to obtain building candidates by the proposed detector helps to better separate 

trees from buildings. 

 

3.2 Use of Width, NDVI and Entropy 

The black areas in Mg are either buildings, trees or other elevated objects. Line segments around 

these black shapes in Mg are formed according to the process described in Awrangjeb et al. 



 

(2010b), and in order to avoid detected tree-edges, extracted lines shorter than the minimum 

building width 3min L m are removed. Trees having small horizontal area are thus removed. 

 In Awrangjeb et al. (2010b) the mean of the NDVI value was then applied to eliminate trees 

having large horizontal area. If the mean NDVI value was above a threshold at any side of the 

line, then the line was removed as a tree edge. However, the NDVI has been found to be an 

unreliable cue even in normal scenes where trees and buildings have distinct colors 

(Rottensteiner et al., 2007). In addition, it cannot differentiate between trees and green buildings 

when both exhibit high NDVI values. Figure 4a shows an example where a green building B1 

cannot be detected at all, since all lines around it are rejected. However, green building B2 can 

be partially detected because it has a white colored roof section. In some areas there may be 

non-green buildings having the same color as trees, especially when leaves change color in 

different seasons. In such cases, the removal of trees based on the NDVI will result in many 

buildings also being removed. Detection of these same buildings will likely also lead to 

detection of trees. 

 In the improved algorithm, texture information, namely entropy, and NDVI are jointly 

employed to remove large trees. Entropy is a statistical measure of randomness that can be used 

to characterize the texture of the input image (Gonzalez et al., 2003). Its adoption is based on 

the assumption that trees are rich in texture as compared to building roofs. While a high entropy 

value at an image pixel indicates a texture (tree) pixel, a low entropy value indicates a ‘flat’ 

(building roof) pixel. 

In order to calculate entropy e at a point P of a grey-scale image, a 9×9 sub image I is 

considered (Gonzalez et al., 2003), where P is the centre point. A normalized histogram H for I, 

involving 256 bins and values between 0 and 1, is formed and entropy is calculated using non-

zero frequencies as 

,log2 ii HHe where 1≤ i ≤ 256 and 0 < Hi ≤ 1. (1) 



 

Figure 4b shows the entropy image for the scene in Figure 4a. A threshold value of 0.8 is 

applied to obtain the entropy mask Me shown in Figure 4c. This threshold is selected because it 

is roughly the intensity value of pixels along the boundary between the textures (Gonzalez et al., 

2003). We see that while we have low entropy values (black areas in Me) on buildings B1 and 

B2, we have high entropy values (white areas in Me) on trees T1 and T2. 

In the improved detector, if the mean NDVI is above the NDVI threshold at any side of a 

line segment, a further test is performed before removing this line segment as a tree-edge. This 

test checks whether the number of pixels having high entropy values exceeds the entropy 

threshold Tent = 30%. In other words, whether the number of white pixels in Me is more than Tent. 

If the test holds, the line segment is removed as a tree edge; otherwise it is selected as a building 

edge. Figure 4d shows that the green buildings B1 and B2 can be fully detected using this 

approach. In addition, some of the trees subject to shadowing and self-occlusion are also 

detected. 

The remaining lines are then adjusted and extended as described in Awrangjeb et al. (2010b). 

Each line is adjusted based on the nearest image line which is at least 1.5Lminm long. Finally, 

rectangular shapes are obtained using the extended lines. In an iterative procedure, an initial 

candidate building position is initially detected using the first longest line segment, then another 

is found using the second longest line segment and so on. The final candidate building positions 

are obtained from their initial positions by extending each of the four sides. Image color and 

texture information are considered during the extension. Figure 5 shows the candidate buildings 

for two scenes shown in Figure 3. 

 

3.3 Application of Edge Orientation Histogram 

So far we have used the local neighborhood information around the extracted lines in order to 

distinguish between trees and buildings. In fact, during the joint application of NDVI and 

entropy in the previous section we have considered a rectangle of width 1.5m (since Lmin = 3m) 



 

on each side of an extracted line (see Figure 6a). However, due to sunlight, shadows and self-

occlusions among trees or when an area is mostly filled with dense vegetation, or when trees 

change color or lose leaves in different seasons, color and texture from such a small 

neighborhood may not provide distinct information and therefore many of the tree edges may 

still remain. Consequently, a large number of false candidates can be obtained. Such a situation 

is clearly evident in Figure 7a, where trees might not be pure green in color and the buildings 

are closely surrounded by dense vegetation. In such situations, texture information within a 

larger neighborhood (within the candidate building rectangle, as shown in Figure 6b) can be 

exploited to identify the false candidates.  In this section, we propose an innovative rule-based 

procedure based on the edge orientation histogram to remove the false building candidates. 

After detecting candidate buildings, a gradient histogram is formed using the edge points 

within each candidate building rectangle. Edges are first extracted from the orthophoto using an 

edge detector and short edges (less than 2m in length) are removed. Each edge Γ(t) = (x(t), y(t)) 

of length n, where t is an arbitrary parameter and 1≤ t ≤ n, is smoothed by using a Gaussian 

function gσ with scale σ = 3: 

xσ (t) = x (t) * gσ     and     yσ (t) = y (t) * gσ (2) 

where * denotes the convolution. The first order derivatives (x and y differences) are then 

calculated on the smoothed curve Γσ (t) = (xσ (t), yσ (t)) as: 
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 The gradient obtained at each point using (4) will lie within the range of [– 90°, + 90°]. A 

histogram with a successive bin distance of Dbin = 5° is then formed using the gradient values of 

all edge points lying inside the candidate rectangle. 



 

 Rectangles containing either the whole or a major part of a building should have one or more 

significant peaks in ΔΓ, since edges detected on building roofs are formed from straight line 

segments. All points on an apparent straight line segment will have a similar gradient value and 

hence will be assigned to the same histogram bin, resulting in a significant peak. A significant 

peak means the corresponding bin height is well above the mean bin height of the histogram. 

Since edge points whose gradient falls into the first (at –90° to –85°) and last (at 85° to 90°) 

bins have almost the same orientation, located peaks in these two bins are added to form a 

single peak. 

 Figure 8 illustrates three gradient histogram functions and mean heights for candidate 

buildings B1, B2 and B3 in Figure 7b. Figure 8a shows that B1 has two significant peaks: 80 

pixels at 0° and 117 (55+62) pixels at ±90°, these being well above the mean height of 28.6 

pixels. The two significant peaks separated by 90° strongly suggest that this is a building. From 

Figure 8b it can be seen that B2 has one significant peak at ±90° but a number of insignificant 

peaks. This points to B2 being partly building but mostly vegetation, which is also supported by 

the high mean height value. With the absence of any significant peak, but a number of 

insignificant peaks close to the mean height, Figure 8c indicates that B3 is comprised of 

vegetation. Although there may be some significant peaks in heavily vegetated areas, a high 

average height of bins between two significant peaks can be expected. Note that the orthophoto 

resolution in this case was 10cm, so a bin height of 80 pixels indicates a total length of 8m from 

the contributing edges. 

 The observations above support the theoretical inferences. In practice, however, detected 

vegetation clusters can show the edge characteristics of a building, and a small building having 

a flat roof may not have enough edges to show the required peak properties. As a result, some 

true buildings can be missed, while some false buildings may be detected. A number of 

precautions can be formulated in order to minimize the occurrence of false detections. 

 Two histograms are formed using edges within each detected rectangle. The first histogram, 

termed a collective histogram Hcol, considers all the edges collectively (see Figure 8). The 



 

second histogram, termed an individual histogram Hind, is formed for the longest individual edge 

within the rectangle. Figure 9 shows the three individual histogram functions for candidates B1, 

B2 and B3 in Figure 7b. The highest peaks in individual histograms for candidates B1, B2 and B3 

are 9, 10 and 2 pixels respectively. It is evident that while candidates B1 and B2 have long 

straight edges, candidate B3 does not. In other words, the individual histograms indicate that B1 

and B2 may be on buildings, but B3 is likely to be completely on vegetation. 

 Now we carry out the following tests on Hcol and Hind to identify true buildings and to 

remove trees. If a detected rectangle passes at least one of the following tests it is selected as a 

building, otherwise it is removed as vegetation. 

 • Test 1: Hcol has at least two peaks with heights of at least 3Lmin and the average height of 

bins between those peaks is less than 2Lmin. This test ensures the selection of a large building, 

where at least two of its long perpendicular sides are detected. It also removes vegetation where 

the average height of bins between peaks is high. 

 • Test 2: The highest bin in Hcol is at least 3Lmin in height and the aggregated height of all 

bins in Hcol is at most 90m. This test ensures the selection of a large building where at least one 

of its long sides is detected. It also removes vegetation where the aggregated height of all bins is 

high. 

 • Test 3:  Hcol has at least two peaks with heights of at least 2Lmin, and the highest bin-to-

mean height ratio RMm1 is at least 3. This test ensures the selection of a medium size building, 

where at least two of its perpendicular sides are detected. It also removes vegetation where the 

highest bin-to-mean height ratio is low. 

 • Test 4:  The highest bin in Hcol has a height of at least Lmin and the highest bin-to-mean 

height ratio RMm2 is at least 4. This test ensures the selection of a small or medium size building 

where at least one of its sides is at least partially detected. It also removes small to moderate 

sized vegetation areas where the highest bin-to-mean height ratio is low. 



 

 • Test 5: The highest bin in Hind has a height of at least Lmin and the aggregated height of all 

bins in Hcol is at most 90m. This test ensures the selection of buildings which are occluded on at 

most three sides. 

 • Test 6: The ratio RaTp of the detected rectangular area to the number of texture pixels (NTp, 

the aggregated height of all bins in Hcol) is at least 45. This test ensures the selection of all 

buildings which are at least partially detected but the roof sides are missed. 

The application of these tests on the complex scene in Figure 7b produces the result shown 

in Figure 7c. 

 

4. Performance Evaluation 

The threshold-free evaluation system (Awrangjeb et al., 2010b) involved in the performance 

study conducted makes one-to-one correspondences using nearest centre distances between 

detected and reference buildings. The words ‘threshold-free’ mean the evaluation system does 

not involve any thresholds based on human choice. In contrast, traditional approaches 

(Rottensteiner et al., 2005; Rutzinger et al., 2009; Lee et al., 2008) typically use one or more 

overlapping thresholds in determining correspondences between detected and reference building 

sets. The problem with threshold-based systems is that they are subjective and so there is no 

unique way to select the thresholds (Shufelt, 1999). 

 We used four data sets from Australia: Fairfield, Moonee Ponds, Knox and Hobart. The 

experimentation was carried out in two phases. Firstly, a sensitivity analysis of six important 

parameters was carried out to test how the detection algorithm would perform when parameter 

values were changed. The standard parameter values were chosen using three sub-images from 

the Moonee Ponds, Fairfield, and Knox data sets. Secondly, all parameters were set at their 

chosen ‘standard’ values and detection performance was evaluated for the full area of each data 

set using 15 indices in three categories: object-based, pixel-based and geometric evaluations. 

Since the Hobart data set was not used during the selection of the standard parameter values, the 



 

direct application of the chosen standard values to the Hobart data set for performance 

evaluation indicated that the standard values could be used on any other future data sets. 

 

4.1 Threshold-Free Evaluation System 

Two sets of data were used to evaluate the proposed detection process. In each, a building is 

represented either as a rectangular entity, for ‘I’ shape buildings, or as a set of rectangular 

entities, for ‘L’, ‘U’ and ‘C’ shapes. The first set Bd = {bd,i}, where 0 ≤ i ≤ m and m is the 

number of detected rectangular entities, is known as the ‘detected set’. It has been obtained from 

the proposed detection technique. Each entity bd,i is an array of four vertices and the centre of a 

rectangular detected entity. The second set Br = {br,j}, where 0 ≤ j ≤ n and n is the number of 

reference entities, is termed ‘reference set’. It is obtained from manual building measurement 

within the orthoimagery. Each entity br,j is an array of four vertices and the centre of a 

rectangular reference entity. 

To find the reference set Br, manual image measurement is used. Any building-like objects 

above the height threshold Th are included in Br. As a result, some garages (car-ports) whose 

heights are above Th are also included, but some building parts (verandas) whose heights are 

below Th are excluded. Different building parts are referred to separate rectangular entities. 

Consequently, there is one entity for ‘I’ shape, two entities for ‘L’ shape, three entities for ‘U’ 

shape, four entities for ‘C’ shape and so on. 

It is natural that different rectangular entities of the same building overlap each other. In Br, 

two overlapping entities must always belong to the same building and represent two connected 

building parts (Figure 10a). Such an overlap is defined as a ‘natural overlap’ and for 

identification purposes a ‘building identification number’ bid (stored in br,j) is assigned to each 

reference entity, in addition to the four vertices. Entities of the same building are assigned the 

same bid, but those of the different buildings are assigned different bid values. 



 

 For Bd, the situation is different. Here two overlapping entities may belong to the same 

building and represent two connected building parts. In such a case, this overlap is a ‘natural 

overlap’ (Figure 10a) and it is not counted as an error in the proposed evaluation. In all other 

cases, the overlap is counted as an error in the evaluation system. For example, the overlapping 

entities may represent the same building (multiple detection, Figure 10b) or constitute 

combinations of true and false detections (Figures 10c-e). 

 In an approach similar to that of Song and Haithcoat (2005), a detected entity is counted as 

correct if any of its parts overlap a reference entity. However, unlike existing evaluation systems 

(Rottensteiner et al., 2005; Rutzinger et al., 2009), a pseudo one-to-one correspondence is 

established between the detected and reference sets without using any thresholds. Pseudo one-

to-one correspondence means that each entity in one set has at most one correspondence in the 

other set. If a detected entity overlaps only one reference entity which is not overlapped by any 

other detected entity, then a true correspondence is established between them. If a detected 

entity overlaps more than one reference entity, then the nearest reference entity (based on the 

distance between centers) is considered as a true correspondence for the detected entity. The 

same rule is applied when a reference entity is overlapped by more than one detected entity. As 

a consequence, there will be no correspondence for ‘false positive’ and ‘false negative’ entities. 

 

4.2 Evaluation Indices 

In the assessment of the improved algorithm, both object- and pixel-based evaluation were 

employed. Whereas pixel-based evaluation is based on the number of pixels within the 

buildings, object-based evaluation is based on the number of buildings. Seven indices were used 

for object-based evaluation. Completeness Cm, also known as ‘detection rate’ (Song and 

Haithcoat, 2005) or ‘producer's Accuracy’ (Foody, 2002), correctness Cr, also known as ‘user's 

accuracy’ (Foody, 2002), and quality Ql have been adopted from Rutzinger et al. (2009). 



 

Multiple detection rate Md, detection overlap rate Do, detection cross-lap rate Crd and reference 

cross-lap rate Crr are from Awrangjeb et al. (2010b). 

 A total of 7 pixel-based evaluation indices are also used, these being: completeness Cmp, also 

known as ‘matched overlay’ (Song and Haithcoat, 2005) and ‘detection rate’ (Lee et al., 2003), 

correctness Crp, and quality Qlp from Rutzinger et al. (2009); area omission error Aoe and area 

commission error Ace from Song and Haithcoat (2005), and branching factor Bf and miss factor 

Mf from Lee et al. (2003). 

 The root-mean-square-error (RMSE) of positional discrepancy is employed to quantify 

geometric positional accuracy. The RMSE is measured as the average distance between a pair of 

detected and reference entities and it is measured for true positive entities only. 

 

4.3 Data Sets 

The test data sets employed cover four suburban areas in Australia, Fairfield, NSW; Hobart, 

Tasmania; Moonee Ponds, Victoria; and Knox, Victoria (see Table 1). 

The Fairfield data set covers an area of 588m×417m and contains 370 buildings, Hobart 

covers 600m×600m and contains 200 buildings, Moonee Ponds covers 447m×447m and has 

250 buildings and Knox covers 400m×400m and contains 130 buildings. Fairfield and Moonee 

Ponds contain many large industrial buildings and in Moonee Ponds there were some green 

buildings. Knox can be characterized as outer suburban with lower housing density and 

extensive tree coverage that partially covers buildings. Hobart has residential buildings with 

moderate to dense coverage of trees that partially cover the buildings as well. In terms of 

topography, Fairfield and Moonee Ponds are relatively flat while Knox and Hobart are quite 

hilly. 

 LIDAR coverage comprised last-pulse returns with a point spacing of 0.5m for Fairfield, and 

first-pulse returns with a point spacing of 1m for Hobart, Moonee Ponds and Knox. For 

Fairfield and Knox, RGB color orthoimagery was available, with resolutions of 0.15m and 



 

0.1m, respectively. Hobart and Moonee Ponds image data comprised RGBI colour 

orthoimagery with a resolution of 0.1m. Bare-earth DEMs of 1m horizontal resolution covered 

all four areas. For the data sets having only RGB color orthoimagery we have estimated the 

pseudo-NDVI image instead of the NDVI image following the process in Rottensteiner et al. 

(2005). 

 The orthoimagery had been created using bare-earth DEMs, so that the roofs and the tree-

tops were displaced with respect to the LIDAR data. Thus, data alignment was not perfect. 

Apart from this registration problem, there were also problems with shadows in the 

orthophotography, so the NDVI and pseudo-NDVI images did not provide as much information 

as expected. 

 Reference data sets were created by monoscopic image measurement using the Barista 

software (Barista, 2011). All rectangular structures, recognizable as buildings and above the 

height threshold Th, were digitized. The reference data included garden sheds, garages, etc. 

These were sometimes as small as 10m2 in area. 

 

4.4 Sensitivity Analysis 

For the sensitivity analysis, five different values for each of the six parameters were used and 

object- and pixel-based qualities were estimated. These parameters comprised entropy threshold 

Tent in percentage, orientation histogram bin distance Dbin in degrees, number of total texture 

pixels or the aggregated bin height NTp in meters, ratios of highest bin-to-mean height RMm1 and 

RMm2, and ratio RaTp of the detected area to NTp in meters. The reason for choosing quality as a 

measure for sensitivity analysis is that it provides a balance between completeness and 

correctness (Heipke et al., 1997). The following values were used for the six parameters: 

 • Tent: 0.2, 0.3, 0.4, 0.5 and 0.6; 

• Dbin: 3, 4, 5, 6 and 9°; 

• NTp: 70, 80, 90, 100 and 110; 



 

• RMm1: 1, 2, 3, 4 and 5; 

• RMm2: 2, 3, 4, 5 and 6 and 

• RaTp: 35, 40, 45, 50 and 55m. 

 Figure 11, in which the numbers 1 to 5 along the abscissa indicate the five values for each 

parameter, graphically illustrates the object- and pixel-based qualities as a percentage. When 

one of the parameters was changed, the others were set at their standard values.  The pixel-based 

quality was given more weight than the object-based quality in the choice of the standard value 

for each parameter. 

 As shown in Figure 11, both object-based and pixel-based qualities were highest at entropy 

threshold Tent = 0.3, ratios RMm1 = 2, RMm2 = 4 and RaTp = 45. At bin distance Dbin = 5°, where the 

highest pixel-based quality was achieved, the object-based quality was slightly lower than the 

maximum. 

 Overall, all parameters were found to have very low sensitivity at the chosen values. In 

object-based evaluation, the least sensitive parameter was NTp in which the largest swing 

between the maximum and minimum quality values was 0.4% and the most sensitive parameter 

was Dbin for which the largest swing was 2.1%. In pixel-based evaluation, the least sensitive 

parameter was RaTp in which the largest swing between the maximum and minimum quality 

values was 0.2% and the most sensitive parameter was Dbin for which the largest swing was 

1.2%. This observation indicates that Dbin was the most sensitive parameter with only 2.1% 

object-based swing and 1.2% pixel-based swing. 

 

4.5 Results and Discussion 

4.5.1 Evaluation using Standard Parameter Values 

Tables 2 to 4 show object-based results, pixel-based results and geometric accuracy, 

respectively, obtained for the four data sets with the improved building detection algorithm. 

Visual illustrations of selected building detection results are shown in Figures 12 to 17. 



 

In object-based evaluation, 91% quality, on average, was observed with 95% completeness 

and 96% correctness (Table 2). The best performance was found in the Hobart data set: 95% 

quality with low error rates (Md = 4%, Do = 6%, Crd = 3% and Crr = 6%). In Knox, quality was 

at 87% with relatively high error rates (Md = 5%, Do = 13%, Crd = 11% and Crr = 46 %). While 

the performance in Fairfiled was similar to that of Hobart, the error rates in Moonee Ponds were 

similar to those in Knox. This was because Fairfield contained mostly residential buildings and 

a low vegetation density (Figure 12) and Hobart had dense vegetation with pure green leaves 

(Figures 14 and 15). Therefore, the NDVI information alone removed most of the vegetation in 

both of these scenes and a small number of false buildings were eliminated by using the edge 

orientation histogram. In contrast, both the moderate density vegetation in Moonee Ponds 

(Figure 13) and the dense vegetation in Knox were not purely green (Figures 16 and 17). As a 

result, most of the trees could not be removed using the NDVI. The majority of them were 

removed using entropy and the edge orientation histogram. Nevertheless, a low number of small 

trees could not be removed since small trees did not provide enough texture information in the 

orientation histogram. Moreover, in Moonee Ponds and Knox, some buildings were detected 

multiple times. 

In pixel-based evaluation, on average 69% quality was observed with 81% completeness and 

82% correctness (Table 3). With respect to different data sets, the pixel-based performance 

followed the same trend as the object-based performance discussed above. 

 When compared to the object-based performance, the pixel-based performance was poor, for 

the following main reasons. Firstly, due to the use of bare-earth DEMs for orthoimage 

generation, large irregular and random registration errors were observed between the LIDAR 

and imagery data for all four data sets. Secondly, due to occlusions on buildings some reference 

buildings could not be fully digitized. Finally, the detected rectangles on the occluded buildings 

also included parts of the occluding trees. The final reason was also evident from the geometric 

accuracy shown in Table 4. 



 

There were 19 and 23 pixels RMS error in the Hobart and Knox data sets, while in Fairfield and 

Moonee Ponds the corresponding value was 16 pixels. The occluding trees in both Knox and 

Hobart caused the low geometric accuracy. 

 In general, the improved detector was able to detect buildings in the case of hilly areas with 

dense vegetation and when the trees had colors other than pure green. It was also effective when 

buildings were seriously occluded by dense vegetation. For example, buildings B1 in Figure 14; 

B1 to B7 in Figure 15; B1 to B3 in Figure 16; and B2 to B4 in Figure 17 were highly occluded by 

trees, and building B6 in Figure 15c was also partially shadowed. The improved detector 

detected all these buildings successfully. However, in some cases, when a building was almost 

occluded or had low height the improved detector failed. In the first instance (see building B8 in 

Figure 15c), the improved detector was unable to detect a building edge with minimum length 

(at least 3m). In the second (building B1 in Figure 17b), the height threshold estimated using the 

local DEM height assigned the low-height building to be ground (white region) in the ground 

mask. 

 

4.5. 2 Comparison with Other Detectors 

Since different published detection techniques follow different evaluation systems on different 

data sets, they are difficult to compare. The original detector in (Awrangjeb et al., 2010b) was 

evaluated using the same threshold-free evaluation system on Fairfiled and Moonee Ponds data 

sets (Awrangjeb et al., 2010a). We have evaluated the original detector on Knox and Hobart 

data sets too. The Fairfield data set was also previously employed by Rottensteiner et al. (2005), 

Rottensteiner et al. (2007) and Rutzinger et al. (2009) to investigate automated building 

extraction techniques, but they used threshold-based evaluation systems. The evaluation results 

in Sohn and Dowman (2007) and Cheng et al. (2008) were on different data sets and also used 

threshold-based evaluation systems. They can therefore not be compared. 



 

 When compared to the evaluation results in Awrangjeb et al. (2010a,b), the improved 

algorithm produced moderately better performance than the original algorithm in object-based, 

pixel-based and geometric accuracy for both the Fairfield and Moonee Ponds data sets. The 

better performance was mainly due to proper detection of large industrial buildings in both of 

the scenes, detection of the available green buildings in Moonee Ponds, and elimination of trees 

in both of the scenes. 

 However, the improved algorithm has been designed for enhanced performance in hilly areas 

with extensive tree coverage, as best exemplified by the Hobart and Knox data sets in Figures 

14 to 17. In both Knox and Hobart, the improved algorithm exhibited significantly better 

performance over the original, due to two main reasons. Firstly, the improved algorithm better 

accommodated the dense tree cover that characterized the Hobart and Knox data sets. Fairfield 

and Moonee Ponds on the other hand exhibit low vegetation coverage. Secondly, the improved 

algorithm showed its merits in better handling varying topography. Hobart (maximum height 

HM = 226m and minimum height Hm = 140m) and Knox HM = 270m and Hm = 110m) are hilly 

areas, whereas Fairfield (HM = 23m and Hm = 1m) and Moonee Ponds (HM = 43m and Hm = 

23m) are moderately flat. 

 Therefore, the original algorithm detected a large number of false buildings and missed 

many of the true buildings in both Hobart and Knox. For example, Figure 18 shows the building 

detection results, obtained with the original detector, on the same Knox scene shown in Figure 

16a. It performed much worse than the proposed improved detector in both of the scenes. In the 

object-based evaluation in Knox, the original detector offered 56% quality with 77% 

completeness and 67% correctness. In contrast, as shown in Table 2, the proposed improvement 

provided 87% quality with 94% completeness and 92% correctness in Knox. In pixel-based 

evaluation, the original detector gave 27% quality with 44% completeness and 42% correctness. 

In contrast, Table 3 shows that the improved detector offered 61% quality with 74% 

completeness and 74% correctness. The geometric accuracy for Knox obtained with the original 

detector was 10 pixels worse than that from the improved detector. 



 

 Rottensteiner et al. (2005), Rottensteiner et al. (2007) and Rutzinger et al. (2009) evaluated 

different detectors in terms of completeness, correctness and quality using two different 

threshold-based evaluation systems. Rutzinger et al. (2009) has presented results of pixel-based 

evaluation of the Dempster-Shafer (DS) detector showing that it can offer higher completeness 

(92.1%) and quality (81.8%) than the proposed detector. However, in object-based evaluation 

the DS detector offered much lower completeness (44.2%) and quality (43.1%) than the 

proposed detector. The superior performance of the DS detector in pixel-based evaluation was 

largely due to the adopted evaluation systems, Rottensteiner et al. (2005) and Rutzinger et al. 

(2009), which excluded false positive and false negative buildings from evaluation and 

established many-to-many relationships between the detected and reference sets. Moreover, 

unlike the proposed detector the DS detector was excessively sensitive to small buildings 

(performance deteriorated with the decrease of building size) and buildings smaller than 30m2 

could not be detected Rottensteiner et al. (2007). 

 

5. Conclusion 

This paper has presented an improved automatic building detection technique which exhibits 

better separation of buildings from trees. In addition to employing height and width thresholds 

and color information, it uses texture information from both LIDAR and color orthoimagery. 

The height threshold is used to generate the ground mask where, unlike the so-called normalized 

DSM, buildings are found to be well separated from the surrounding vegetation. The width 

threshold helps in removing trees of small horizontal coverage. The joint application of entropy 

and NDVI helps in the removal of moderate to large vegetation by making trees more easily 

distinguishable. Finally, a rule-based procedure based on the edge orientation histogram from 

the image edges assists in eliminating false positive building candidates. It is specifically 

helpful in removing trees which are not pure green, bearing in mind that trees may change color 

and lose leaves in different seasons. 



 

 Experimental evaluation of the improved algorithm was carried out in two phases. In the 

first, a sensitivity analysis was performed in which the selection of standard parameter values 

was carried out using three representative samples from three test sites, Fairfield, Moonee Ponds 

and Knox, each having distinct characteristics in terms of terrain slope, building type, roof 

structure and color, density of vegetation, scene complexity, resolution of LIDAR and 

orthoimages, and date and time of aerial photography. The parameters involved in the approach 

were found to be sufficiently insensitive to different settings. In the second phase, the standard 

parameter values were employed to evaluate object-based, pixel-based and accuracy 

performance using 15 indices. The experimental results showed that whereas the improved 

algorithm produced moderately enhanced performance in Fairfield and Moonee Ponds, it 

yielded a very significant improvement in building detection in Knox and Hobart, across all 

three categories of evaluation indices. It also offered better performance than Rottensteiner et al. 

(2005). 

 It is acknowledged that there will be some unusual situations in which the improved 

algorithm will fail. For example, this can occur when the entropy information employed for 

distinguishing trees and green buildings results in the removal of buildings with green, textured 

roofs. It is also likely when vegetation with shadows and self-occlusions display very low 

entropy and hence no edge information. Consequently, Test 6 in Section 3.3, which employs the 

edge orientation histogram, may detect as buildings small vegetation clusters with self-

occlusions or shadows. Finally, due to registration error between the LIDAR data and 

orthoimagery, some trees and especially those beside roads can still be detected as buildings. 

Future research will focus upon resolving these issues as well as upon the 3D reconstruction of 

complex building roofs. 
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Figure 1. Two hilly areas with complex scene structure: (a) Knox, Victoria (200m×200m) and 

(b) Hobart, Tasmania (300m×300m). 



 

 

Figure 2. Flow diagram of the improved building detection technique. 

 

Figure 3. (a) Images of two test scenes, (b) corresponding LIDAR data (shown in gray-scale), 

(c) ground masks and (d) normalized DSMs. The nDSM is shown as a binary image where 

black pixels indicate non-zero heights greater than the height threshold. 



 

 

 

Figure 4. Detection of green buildings: (a) the NDVI information alone missed green buildings 

B1 and B2, (b) entropy image for the scene in (a), (c) entropy mask from (b), and (d) combined 

NDVI and entropy information is able to detect the two green buildings. In (a) and (d), black 

lines represent detected buildings. In (b) and (c), while black pixels represent low entropy areas, 

white pixels represent high entropy areas. 

 



 

 

Figure 5. Candidate buildings for two scenes in Figure 3. 

 

 

Figure 6. Neighborhood when (a) color and entropy are jointly applied and (b) edge orientation 

histogram is applied. 

 

 

Figure 7. A complex scene: (a) ground mask, (b) detected candidate buildings with a large 

number of false detections and (c) final detected buildings after removing false positives. 



 

 

 

Figure 8. Gradient histogram functions (collective) and means for candidates (a) B1, (b) B2 and 

(c) B3 in Figure 7b: x-axis is in degrees and y-axis is in pixels (bin heights). Two bins at ±90° 

basically form one bin, because lines in these two bins are perpendicular to the x-axis and reside 

above and below the x-axis. Therefore, when we have peaks at either of these bins, we 

accumulate their heights to form a single peak. 



 

 

 

Figure 9. Gradient histogram functions (individual) for candidates (a) B1, (b) B2 and (c) B3 in 

Figure 7b: x-axis is in degrees and y-axis is in pixels (bin heights). Two bins at ±90° basically 

form one bin, because lines in these two bins are perpendicular to the x-axis and reside above 

and below the x-axis. Therefore, when we have peaks at either of these bins, we accumulate 

their heights to form a single peak. 



 

 

 

Figure 10. Different types of detection overlaps: (a) natural, (b) multiple, (c) false-false, (d) 

true-true and (e) true-false. 

 

 

Figure 11. Sensitivity of different parameters under: (a) object-based quality and (b) pixel-based 

quality. The numbers 1 to 5 along the abscissa indicate the five values for each parameter 

mentioned in Section 4.4. 



 

 

 

Figure 12. Building detection by the improved algorithm on a scene from Fairfield. 

 

 

Table 1. Data sets (R: residential buildings, I: industrial buildings, F: flat area, H: hilly area, L: 

low vegetation, M: moderate vegetation, D: dense vegetation). 

Scenes Size Image LIDAR Buildings Properties 

Fairfield 588m×417m RGB (0.15m) Last (0.5m) 370 R, I, F, L 

Moonee Ponds 447m×447m RGBI (0.10m) First (1m) 250 R, I, F, M 

Knox 400m×400m RGB (0.10m) First (1m) 130 R, H, D 

Hobart 600m×600m RGBI (0.10m) First (1m) 200 R, H, D 

 

 



 

Figure 13. Building detection by the improved algorithm on a scene from Moonee Ponds. 

 

 



 

 

Figure 14. Building detection by the improved detector on a scene from Hobart. 

 

 

 

Table 2. Object-based evaluation results in percentages (Cm = completeness, Cr = correctness, Ql 

= quality, Md = multiple detection rate, Do = Detection overlap rate, Crd = detection cross-lap 

rate and Crr = reference cross-lap rate). 

Scenes Cm Cr Ql Md Do Crd Crr 

Fairfield 95.1 95.4 92.2 2.7 8.6 3.5 9.7 

M Ponds 94.5 95.3 89.2 6.2 13.1 7.3 17.5 

Knox 94.3 91.7 86.9 5.3 13.2 10.5 45.7 

Hobart 94.9 99.8 94.7 4.1 5.9 2.9 6.4 

Average 94.7 95.6 90.8 4.6 10.2 6.1 19.8 

 



 

 

Figure 15. Building detection by the improved detector on a second scene from Hobart. 

 

 



 

 

Figure 16. Building detection by the improved detector on a scene from Knox. 

 

Figure 17. Building detection by the improved detector on a second scene from Knox. 

 



 

 

Figure 18. Building detection by the original detector on the Knox scene shown in Figure 16. 

 

 

Table 3. Pixel-based evaluation results in percentages (Cmp = completeness, Crp = correctness, 

Qlp = quality, Aoe = area omission error, Ace = area commission error, Bf = branching factor and 

Mf = miss factor). 

Scenes Cmp Crp Qlp Aoe Ace Bf Mf 

Fairfield 83.2 84.5 72.4 15.3 12.5 13.5 20.3 

M Ponds 87.2 85.4 75.3 12.7 13.2 16.7 17.3 

Knox 74.1 77.3 60.9 26.4 21.0 29.4 34.9 

Hobart 80.8 80.2 67.4 20.3 19.0 25.0 23.7 

Average 81.3 81.9 69.0 18.7 16.4 21.2 24.1 

 



 

 

Table 4. Geometric accuracy expressed 

via RMSE values. 

Scenes Meters Pixels 

Fairfield 2.4 16.0 

M Ponds 1.6 16.0 

Knox 2.3 23.0 

Hobart 1.9 19.0 

Average 2.1 18.5 

 


